Pregabalin as a Neuroprotector after Spinal Cord Injury in Rats: Biochemical Analysis and Effect on Glial Cells
نویسندگان
چکیده
As one of trials on neuroprotection after spinal cord injury, we used pregabalin. After spinal cord injury (SCI) in rats using contusion model, we observed the effect of pregabalin compared to that of the control and the methylprednisolone treated rats. We observed locomotor improvement of paralyzed hindlimb and body weight changes for clinical evaluation and caspase-3, bcl-2, and p38 MAPK expressions using western blotting. On histopathological analysis, we also evaluated reactive proliferation of glial cells. We were able to observe pregabalin's effectiveness as a neuroprotector after SCI in terms of the clinical indicators and the laboratory findings. The caspase-3 and phosphorylated p38 MAPK expressions of the pregabalin group were lower than those of the control group (statistically significant with caspase-3). Bcl-2 showed no significant difference between the control group and the treated groups. On the histopathological analysis, pregabalin treatment demonstrated less proliferation of the microglia and astrocytes. With this animal study, we were able to demonstrate reproducible results of pregabalin's neuroprotection effect. Diminished production of caspase-3 and phosphorylated p38 MAPK and as well as decreased proliferation of astrocytes were seen with the administration of pregabalin. This influence on spinal cord injury might be a possible approach for achieving neuroprotection following central nervous system trauma including spinal cord injury.
منابع مشابه
Microglial Activation in Rat Experimental Spinal Cord Injury Model
Background: The present study was designed to evaluate the secondary microglial activation processes after spinal cord injury (SCI). Methods: A quantitative histological study was performed to determine ED-1 positive cells, glial cell density, and cavitation size in untreated SCI rats at days 1, 2, and 4, and weeks 1, 2, 3, and 4. Results: The results of glial cell quantification along the 4900...
متن کاملEffect of Chondroitinase ABC Enzyme on Glial Fibrillary Acidic Protein, Chondroitin Sulfated Proteoglycans and Chondroitin 4-Sulfate Levels in an Animal Model of Spinal Cord Injury
Background: Following spinal cord injury, reactive astrocytes upregulate chondroitin sulfate proteoglycans (CSPGs) which act as a barrier to neuronal repair and regeneration. Therefore, enzymatic digestion of CSPGs by chondroitinase ABC (cABC) is a key strategy in the treatment of spinal cord injury. Furthermore, cABC has been shown to attenuate post spinal cord injury inflamma...
متن کاملA clinically oriented experiment on the effect of mixed culture of neonate spinal cord transplantation on recovery of spinal cord injury
In spinal cord injuries, direct trauma by edges of sublaxated or dislocated vertebrae and indirect ischemia as a result of vascular injury necrotize the neural tissue. After spinal cord injury, tissue loss appears as micro- or macrocavitation. Accumulations of non-neuronal cells substitute spared tissue and halts axon regrowth. Lack of supporting cells (secreting trophic factors and matrix) agg...
متن کاملEffect of Oleuropein on Tissue Myeloperoxidase Activity in Experimental Spinal Cord Trauma
Background: Neutrophil infiltration plays an important role in inflammatory reactions following spinal cord injury (SCI) and these cells cause substantial secondary tissue damage. The purpose of this study was to determine the effect of oleuropein (OE) on myeloperoxidase (MPO) activity as an index of neutrophil infiltration. Methods: Rats were randomly divided into four groups of 7 rats each as...
متن کاملA clinically oriented experiment on the effect of mixed culture of neonate spinal cord transplantation on recovery of spinal cord injury
In spinal cord injuries, direct trauma by edges of sublaxated or dislocated vertebrae and indirect ischemia as a result of vascular injury necrotize the neural tissue. After spinal cord injury, tissue loss appears as micro- or macrocavitation. Accumulations of non-neuronal cells substitute spared tissue and halts axon regrowth. Lack of supporting cells (secreting trophic factors and matrix) agg...
متن کامل